Capturing the influence of geopolitical ties from Wikipedia with reduced Google matrix
نویسندگان
چکیده
Interactions between countries originate from diverse aspects such as geographic proximity, trade, socio-cultural habits, language, religions, etc. Geopolitics studies the influence of a country’s geographic space on its political power and its relationships with other countries. This work reveals the potential of Wikipedia mining for geopolitical study. Actually, Wikipedia offers solid knowledge and strong correlations among countries by linking web pages together for different types of information (e.g. economical, historical, political, and many others). The major finding of this paper is to show that meaningful results on the influence of country ties can be extracted from the hyperlinked structure of Wikipedia. We leverage a novel stochastic matrix representation of Markov chains of complex directed networks called the reduced Google matrix theory. For a selected small size set of nodes, the reduced Google matrix concentrates direct and indirect links of the million-node sized Wikipedia network into a small Perron-Frobenius matrix keeping the PageRank probabilities of the global Wikipedia network. We perform a novel sensitivity analysis that leverages this reduced Google matrix to characterize the influence of relationships between countries from the global network. We apply this analysis to two chosen sets of countries (i.e. the set of 27 European Union countries and a set of 40 top worldwide countries). We show that with our sensitivity analysis we can exhibit easily very meaningful information on geopolitics from five different Wikipedia editions (English, Arabic, Russian, French and German).
منابع مشابه
Analysis of world terror networks from the reduced Google matrix of Wikipedia
We apply the reduced Google matrix method to analyse interactions between 95 terrorist groups and determine their relationships and influence on 64 world countries. This is done on the basis of the Google matrix of the English Wikipedia (2017) composed of 5 416 537 articles which accumulate a great part of global human knowledge. The reduced Google matrix takes into account the direct and hidde...
متن کاملMulti-cultural Wikipedia mining of geopolitics interactions leveraging reduced Google matrix analysis
Geopolitics focuses on political power in relation to geographic space. Interactions among world countries have been widely studied at various scales, observing economic exchanges, world history or international politics among others. This work exhibits the potential of Wikipedia mining for such studies. Indeed, Wikipedia stores valuable finegrained dependencies among countries by linking webpa...
متن کاملWikipedia mining of hidden links between political leaders
We describe a new method of reduced Google matrix which allows to establish direct and hidden links between a subset of nodes of a large directed network. This approach uses parallels with quantum scattering theory, developed for processes in nuclear and mesoscopic physics and quantum chaos. The method is applied to the Wikipedia networks in different language editions analyzing several groups ...
متن کاملUsing a Bayesian Method to Assess Google, Twitter, and Wikipedia for ILI Surveillance
Introduction Traditional influenza surveillance relies on reports of influenzalike illness (ILI) by healthcare providers, capturing individuals who seek medical care and missing those who may search, post, and tweet about their illnesses instead. Existing research has shown some promise of using data from Google, Twitter, and Wikipedia for influenza surveillance, but with conflicting findings, ...
متن کاملTime evolution of Wikipedia network ranking
Abstract. We study the time evolution of ranking and spectral properties of the Google matrix of English Wikipedia hyperlink network during years 2003 2011. The statistical properties of ranking of Wikipedia articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabilized for 2007 2011. A special emphasis is done on ranking of Wikipedia personalities ...
متن کامل